Determinants of Steatotic Liver Disease Among People with HIV in Europe and Australia

Carlotta Riebensahm^{1,2,3}, Wendy Bannister⁴, Bernard Surial¹, Lars N. Nielsen⁴, Angela Öllinger⁵, Charlotte Martin⁶, Cristina Mussini⁷, Ferdinand Wit⁸, Massimo Puoti⁹, Jörg Janne Vehreschild^{10,11,12}, Antonella Castagna¹³, Jaime Vera¹⁴, Martin Gisinger¹⁵, Josip Begovac¹⁶, Joan Tallada¹⁷, Olga Fursa⁴, Vani Vannappagari¹⁸, Linda Chen¹⁹, Benedikt Funke²⁰, Jürgen Rockstroh²¹, Lene Ryom^{4,22,23}, Josep M Llibre²⁴, Gilles Wandeler^{1,2}, Lars Peters⁴ on behalf of RESPOND

BACKGROUND

- Steatotic liver disease (SLD) affects close to 50% of people with HIV (PWH), but longitudinal data are lacking
- We investigated the prevalence and incidence of SLD and described the progression to liver fibrosis in RESPOND

METHODS

- We assessed SLD and liver fibrosis in RESPOND participants from January 2012 to December 2022 using serological scores validated for PWH in Europe *
- Participants of black ethnicity, those with viral hepatitis, and pregnant women were excluded
- The Hepatic Steatosis Index (HSI) was calculated using sex, BMI, AST, ALT, and diabetes; the Fibrosis-4 (FIB-4) Index using age, AST, ALT, and platelet count
- Presumed SLD was indicated by a HSI of \geq 36, and liver fibrosis by two consecutive FIB-4 scores of ≥ 3.25
- We used multivariable logistic regression to evaluate factors associated with HSI \geq 36 at first assessment
- Incidence rates (IRs) of HSI ≥36 per 100 person-years of follow-up (PYFU) were calculated for participants with an initial HSI <36, and IRs of two consecutive FIB-4 ≥3.25 for those with HSI ≥36

Table 1. Participants characteristics at time of first HSI

rabie in l'articipantes characteristics at time of mot not	
Characteristics	N= 14,449
Baseline date	Oct 2012 (Apr :
	Nov 2015)
Median age, years (IQR)	45 (37-53
Female sex (%)	2766 (19.1
Race/ethnicity (%)	
White/Caucasian	12112 (83.8
Asian	433 (3.0)
Other	429 (3.0)
Data collection prohibited	1284 (8.9)
Unknown	191 (1.3)
MSM HIV acquisition risk (%)	8343 (57.7
Body mass index $\geq 25 \text{ kg m}^2$ (%)	5433 (37.6
Diabetes (%)	716 (5.0)
Dyslipidemia (%)	10236 (70.8
Hypertension (%)	6805 (47.1
Median CD4+ count, cells/µl (IQR)	554 (381-72
HIV viral load < 200copies/mL (%)	10691 (74.0
ART duration, years (IQR)	6.7 (2.3-13.
Recent exposure to NNRTIs (%)	5054 (35.0
Recent exposure to PIs (%)	4598 (31.8
Recent exposure to InSTI (%)	1431 (9.9)
Recent exposure to TDF (%)	6379 (44.1
Recent exposure to TAF (%)	620 (4.3)

Abbreviations: HSI, hepatic steatosis index; IQR, interquartile range; MSM, men who have sex with men; ART, antiretroviral therapy; NNRTI, Non-nucleoside reverse transcriptase inhibitors; PI, protease inhibitor; InSTI, integrase strand transfer inhibitor; TDF, Tenofovir disoproxil fumarate ; TAF, tenofovir alafenamide

- 2012,

- At their first assessment, one third of eligible RESPOND participants had an HSI ≥36
- comorbidities or exposure to InSTI (Figure 1)
- fibrosis was rare

RESULTS

- Of 14,449 participants included (<u>Table 1</u>), 4,445 (**30.8%**) had HSI \geq 36 at first assessment
- In the remaining 10,004 participants with HSI < 36 at first assessment: - The median follow-up was 8 years (IQR 4.1-10.0), and the median time between
 - assessments was 6 months (IQR 4.1–8.0)
 - <u>Figure 1</u> shows the factors associated with HSI \geq 36, with hypertension and dyslipidaemia being the most important risk factors
- Among 8,555 participants with HSI \geq 36 at the first or a subsequent assessment:

 - per 100 PYFU (95% CI 0.5-0.6)

Figure 1. Multivariable analysis of factors associated with HSI≥36

	Multivar OR (95%
Age, years (ref. >=60) <30 30-39 40-49 50-59	0.63 (0.5 1.00 (0.8 1.12 (0.9 1.15 (1.0
Race/ethnicity (ref. White/Caucasian) Asian Other Collection of race data prohibited Unknown/missing	0.56 (0.4 1.10 (0.8 0.73 (0.6 1.31 (0.9
Current CD4 count, cells/mm3 (ref. >=500) <100 100-199 200-299 300-499	0.50 (0.4 0.60 (0.4 0.64 (0.5 0.87 (0.7
Prior hypertension (ref. no hypertension/unknown)	1.92 (1.7
Prior dyslipidaemia (ref. no dyslipidaemia/unknown)	1.63 (1.4
Most recent regimen* (ref. NNRTI-based) PI-based INSTI-based Combination of NNRTI, PI, and/or INSTI Other No recent exposure	0.83 (0.7 1.17 (1.0 0.75 (0.6 0.92 (0.6 1.14 (0.9
Recent exposure to TDF or TAF (ref. TDF) TAF No TDF or TAF	0.94 (0.7 0.82 (0.7

Multivariable analysis additionally adjusted for HIV acquisition risk, geographical region, and timing of starting ART vs ART-naive. *Received within past 3 months and for a duration of at least 30 days. NNRTI, Non-nucleoside reverse transcriptase inhibitors; PI, protease inhibitor; InSTI, integrase strand transfer inhibitor; TDF, Tenofovir disoproxil fumarate; TAF, tenofovir alafenamide

■ The prevalence of HSI ≥36 was highest in participants aged 50-59 years, those with high CD4 counts, metabolic Among participants with HSI \geq 36, progression to liver

- During 58,717 PYFU, the IR for HSI ≥36 was 12.9 per 100 PYFU (95% CI 12.7-13.2)

- The median follow-up was 7 years and 1.3% had FIB-4 ≥3.25 at the time of first HSI ≥36 - During 50,285 PYFU, the IR of subsequently having two consecutive FIB-4 \geq 3.25 was 0.5

RESULTS (cont.)

- 15000 7500
- 1200 5000
- 2500

10060 20

CONCLUSION

References

ADDITIONAL KEY INFORMATION Contact: Riebensahm, Carlotta, MD PhD, carlotta.riebensahm@unibe.ch Affiliations: ¹Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; ²Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; ³Graduate School of Health Sciences, University of Bern, Bern, Switzerland; ⁴Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; ⁵Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria; ⁶CHU Saint-Pierre, Centre de Recherche en Maladies Infectieuses a.s.b.l., Brussels, Belgium; ⁷Modena HIV Cohort, Università degli Studi di Modena, Modena, Italy; ⁸AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort, HIV Monitoring Foundation, Amsterdam, the Netherlands; ⁹Italian Cohort Naive Antiretrovirals (ICONA), ASST Santi Paolo e Carlo, Milano, Italy; ¹⁰Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; ¹¹German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; ¹²Department II of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt Am Main, Germany; ¹³San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milano, Italy; ¹⁴Brighton HIV cohort; ¹⁵Medizinische Universität Innsbruck, Department of Dermatology and Venerology, Austria; ¹⁶University Hospital of Infectious Diseases, Croatia; ¹⁷European AIDS Treatment Group (EATG), Brussels, Belgium; ¹⁸ViiV Healthcare, Durham, North Carolina, USA; ¹⁹Gilead Sciences, Foster City, California, USA; ²⁰Merck Sharp & Dohme, Rahway, USA; ²¹Department of Medicine I, University Hospital Bonn, Bonn, Germany, ²²Department of Infectious Diseases, Hvidovre Hospital, Denmark; ²³Department of Clinical Medicine, University of Copenhagen, Denmark; ²⁴Hospital Universitari Germans Trias i Pujol,

Barcelona. Spain The RESPOND Study Group https://www.chip.dk/Studies/RESPOND/Study-Group RESPOND Scientific Interest Groups https://chip.dk/Research/Studies/RESPOND/SIGs

• <u>Figure 2a</u> shows the number of PWH with and without HSI each year, along with annual changes in HSI category for those assessed

<u>Figure 2b</u> shows that the prevalence of HSI \geq 36 remained stable for each year of follow-up

Figure 2. a. Number of PWH with and without HSI assessments per year of follow-up

■ HSI<36 ■ HSI>=36 Missing HSI assessments Died/LTFU/withdrawn Censored/no further visit If >1 HSI assessment during year, category is based on maximum HSI score. Censored/no further visit category includes those recruited later with less than maximum number of years follow-up available

If >1 HSI assessment during year, category is based on maximum HSI score. All PWH still under follow-up with HSI available are included.

• The prevalence of HSI \geq 36 was similar to previous studies in PWH

• Participants aged 50–59 years, those with higher CD4 counts, metabolic comorbidities, or exposure to InSTI were more likely to have HSI \geq 36

• In participants with HSI \geq 36, over a median follow-up of 7 years, progression to liver fibrosis was rare

*Riebensahm, C., et al., External Validation of Serologic Scores for the Detection of Liver Steatosis Among People With HIV. Open Forum Infect Dis, 2024